博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ1845 数论 二分快速取余
阅读量:5129 次
发布时间:2019-06-13

本文共 2729 字,大约阅读时间需要 9 分钟。

大致题意:

求A^B的所有约数(即因子)之和,并对其取模 9901再输出。

 

解题思路:

应用定理主要有三个:

(1)   整数的唯一分解定理:

      任意正整数都有且只有一种方式写出其素因子的乘积表达式。

      A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数

(2)   约数和公式:

对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)

有A的所有因子之和为

    S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

(3)   同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

 

有了上面的数学基础,那么本题解法就很简单了:

1: 对A进行素因子分解

分解A的方法:

A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;

当A%2!=0时,则A对下一个连续素数3不断取模...

以此类推,直到A==1为止。

 

注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。

 

最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.

      故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);

2:A^B的所有约数之和为:

     sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].

3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:

(1)若n为奇数,一共有偶数项,则:

      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))

      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

上式加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。

 

(2)若n为偶数,一共有奇数项,则:

      1 + p + p^2 + p^3 +...+ p^n

      = (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)

      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

   上式加粗的前半部分恰好就是原式的一半,依然递归求解

 

4:反复平方法计算幂次式p^n

   这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。

   以p=2,n=8为例

   常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2

   这样做的要做8次乘法

 

   而反复平方法则不同,

   定义幂sq=1,再检查n是否大于0,

While,循环过程若发现n为奇数,则把此时的p值乘到sq

{

   n=8>0 ,把p自乘一次, p=p*p=4     ,n取半 n=4

   n=4>0 ,再把p自乘一次, p=p*p=16   ,n取半 n=2

n=2>0 ,再把p自乘一次, p=p*p=256  ,n取半 n=1,sq=sq*p

n=1>0 ,再把p自乘一次, p=p*p=256^2  ,n取半 n=0,弹出循环

}

则sq=256就是所求,显然反复平方法只做了3次乘法

//Memory Time //336K   0MS #include
using namespace std;const int size=10000;const int mod=9901;__int64 sum(__int64 p,__int64 n); //递归二分求 (1 + p + p^2 + p^3 +...+ p^n)%mod__int64 power(__int64 p,__int64 n); //反复平方法求 (p^n)%modint main(void){ int A,B; int p[size];//A的分解式,p[i]^n[i] int n[size]; while(cin>>A>>B) { int i,k=0; //p,n指针 /*常规做法:分解整数A (A为非质数)*/ for(i=2;i*i<=A;) //根号法+递归法 { if(A%i==0) { p[k]=i; n[k]=0; while(!(A%i)) { n[k]++; A/=i; } k++; } if(i==2) //奇偶法 i++; else i+=2; } /*特殊判定:分解整数A (A为质数)*/ if(A!=1) { p[k]=A; n[k++]=1; } int ans=1; //约数和 for(i=0;i
0) { if(n%2) sq=(sq*p)%mod; n/=2; p=p*p%mod; } return sq;}
View Code

 

 转载自:優YoU http://blog.csdn.net/lyy289065406/article/details/6648539

 

转载于:https://www.cnblogs.com/xiaoniunwp/p/3869833.html

你可能感兴趣的文章
MySQL入门很简单-触发器
查看>>
LVM快照(snapshot)备份
查看>>
Struts2 - 与 Servlet 耦合的访问方式访问web资源
查看>>
绝望的第四周作业
查看>>
一月流水账
查看>>
数论四大定理
查看>>
npm 常用指令
查看>>
C#基础知识面试经典[整理]
查看>>
美图秀秀首页界面按钮设计(二)
查看>>
通过修改CoreCLR中的ClrHost实现自托管程序
查看>>
Dojo—ajax框架实战
查看>>
VideoView获取本地视频播放
查看>>
MySQL数据备份之mysqldump使用
查看>>
【HDU6609】Find the answer【线段树】
查看>>
shell习题第5题:批量更改文件后缀名
查看>>
SQL基础教程
查看>>
Autofac - 生命周期的理解
查看>>
【HEVC帧间预测论文】P1.3 Fast Inter-Frame Prediction Algorithm of HEVC Based on Graphic Information...
查看>>
ECMAscript v.s. Javascript
查看>>
View State
查看>>